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ABSTRACT 

We develop the use of the  ation  diagram  method to analyze  molecular 
emission in  order to derive ph  properties of interstellar  clouds. We focus 
particular  attention on how depth affects the derived total column 
density  and  the  temperatur  ution. We present analytic  results  for 
linear molecules in LTE. ate numerically how subthermal  excitation 
influences the  population hnique, studying how the  determination of 
kinetic temperature is a he local  density is insufficient to achieve 
LTE. We present  results for H and C H 3 0 H ,  representative of linear  and 
non-linear molecules, re ome cases, alternative  interpretations to 
the  standard  optically t lized picture yield significantly different 
results for column densi mperature,  and we discuss this behavior. 
The  population  diagra a very powerful tool  for  determining 
physical conditions  in  oper recognition is given to effects of 
saturation  and  subthe  argue  that  the  population  diagram 
technique  is, in  fact,  superior to fibting intensities of different transitions  directly, 
and  indicate how it can  be effectively employed. 
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1. 
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interstellar clouds. The column  densit 
temperature can  most  straightforward 
these parameters  can  be  obtained fron 
characteristics of clouds such as  their 
distribution, can  be  obtained only by 
employing specialized types of observa 

However, the validity of even the appa 
For example, a single transition, if opt 
temperature (TK) of the gas at a local 
monoxide, the  optical  depth of the COI 

rarer isotopomers, while the thermaliz: 
of density  (determined  from a different 
rates of the lower rotational  transition 
to  the widespread use of l2C0 as a p 
It is useful in this  application, even tl 
models suggest that  there  are significa 
of position  within molecular clouds. 

An  optically thin  transition produces : 
column  density in the  upper level of t 
are  thermalized,  and we know the kine 
column  density into  the column densi 
spectral surveys of emission from molc 
sufficient number of transitions were 0‘ 

a check for self-consistency of the assu 
possible. 

One  potentially  important and frequer 
from molecular line emission is the “r( 
column  density  per statistical weight c 
of their energy above the ground  state 
will just  be a Boltzmann  distribution, 
E,/k will yield a straight line with a s 
level u and E, is its energy above the g 
the  “rotational  temperature” , althougl 
energy levels. The  temperature obtair 
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Introduction 

tant  information about physical conditions  in  dense 
of the species being observed and  the cloud kinetic 
be determined;  indeed,  under  certain  conditions, 

observation of a single transition.  Other  important 
ensity, velocity structure,  and  the  magnetic field 
bserving multiple  transitions,  making  maps,  or 
ons. 

mtly simpler techniques needs to be demonstrated. 
ally thick and thermalized,  can provide the kinetic 
)n in the cloud where r 21 1. In the case of carbon 
mon isotopic species can  be checked  by observing 
ion can be evaluated by an  approximate  comparison 
xhnique)  with  the relatively low spontaneous decay 
The confidence developed in  this  approach  has led 

be of the kinetic temperature in molecular clouds. 
ugh observational  results as well as  theoretical 
variations of the kinetic temperature as a function 

antenna  temperature which  is proportional to  the 
? transition  being observed, and if all transitions 
c temperature, we can convert the single measured 
of the species in question.  Some of the  early 

ular clouds provided the first instance  in which a 
erved that  an analysis of the  excitation, or at least 
Iptions of optical  thinness and  thermalization, was 

ly adopted technique to analyze cloud properties 
ation diagram”.  This  term refers to a  plot of the 
a  number of molecular energy levels, as a function 
In local thermodynamic equilibrium (LTE), this 

I a plot of the  natural logarithm of N,/g,  versus 
pe of 1/T, where g ,  is the  statistical weight of the 
mnd state.  The  temperature inferred is often called 
it is not a priori restricted to a  set of rotational 
d would be expected to be equal to  the kinetic 
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temperatures if all levels  were thermalized. 

Linke, Frerking, & Thaddeus (1979) were among  the first to apply  this  approach  to 
determine  the kinetic temperature in Sgr  B2 using six  rotational lines of CH3SH (methyl 
mercaptan).  They fit a linear  function to their plot of log intensity versus energy to derive a 
rotational  temperature of 9 K ,  considerably lower than estimates of the kinetic temperature 
using tracers such as l2C0. A similar  result, T = 14 K ,  was derived by Frerking, Linke, 
& Thaddeus (1979) using the linear molecule HNCS (isothiocyanic acid).  It is difficult 
to  understand how a hot region such as Sgr B2 could have such a low kinetic temperature 
unless these species trace a particularly cold sub-condensation. A very extensive application 
of this  approach was made much later by Turner (1991) using 36 species (including over 
700 lines) in Sgr B2 and 27 species (responsible for over 800 lines) in Orion KL. Turner 
noted  problems  with using some of this  data,  as  the assumption of optically thin emission 
appears  to break down. Turner fit most of the  rotational  diagrams with a single straight 
line although  in a few cases the  data fell into two categories and two separate fits were 
made.  In almost  all cases the  data have a considerable scatter  around  the fit and  in  many 
(if  not  most) cases it  is  not clear that a single or even a piecewise linear fit is satisfactory. 
The  rotational  temperatures he found  range from 9 K to over  200 K in Sgr B2 and 12 K 
to 120 K in  OMC1. 

The  rotation  diagram approach was also used by Sutton et al. (1995) to derive the kinetic 
temperature in their  study of the  distribution of molecules  in the core of OMC -1. These 
authors found that  the molecular excitation can be reasonably well described by rotational 
temperatures  15 - 45 K for the extended ridge, 50-180 K for the  hot core, and 50  -130 
K for the compact ridge and  the  plateau.  A similar  approach was taken by Serabyn & 
Weisstein (1995) to derive temperatures in the OMC core. 

In  addition  to  hot  star forming cores there  are  many  other  structural  and morphological 
features  associated  with the  star formation process, including cold dark cores, molecular 
outflows, jets, disks, and  ultracompact HI1 regions. It is important  to  determine  the kinetic 
temperatures  within all of these features to  study  the energetics and  interactions in star 
forming regions. In the case of the high mass  protostar  IRAS 20126+4104, Cesaroni et al. 
(1997) have attempted  to derive the kinetic temperature for the disk outflow region using a 
rotational  diagram.  They observed emission from many levels of CH3CN (methyl  cyanide) 
and CH30H (methanol)  and derived temperatures of N 50 K for the bulk of the gas and 
150-260 K for the core. However, the  data show a  great deal of scatter  and  are  far from 
linear over a wide range of excitation energy. 

In  all of these  studies,  the  total  column  density of each species has  associated  with it  an 
uncertainty that is  closely tied to  the assumption of complete thermalization  and the value 
of the inferred temperature. An additional  error arises if the emission is not  optically 

.. 
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thin. To first order,  this produces an underestimate in the  upper level column  density  of 
the observed transition,  but  this can also produce a more insidious error in the  rotational 
temperature  determined (which again  impacts  the  total  column  density of the species in 
question). 

In this  paper we examine  the conditions and  assumptions used to derive column  densities, 
rotational  temperatures,  and  thus  the kinetic temperature, using what we prefer to call the 
“population  diagram”  method. We  feel that this  correctly reflects the idea of analyzing 
the  populations of the various levels in  a  direct,  graphical way. There  are  many  situations 
where the  assumption of optically thin lines may  not  hold. The observer in general is 
unaware  whether the lines observed appear optically thin because their  opacity is truly 
small,  or because the emission is beam  diluted (as could result from a highly clumped 
structure, for example). If a number of observed transitions  do make a straight line  in a 
population  diagram where log(1ntegrated Intensity  per Statistical Weight) is plotted  against 
E,, general practice  has been to conclude that all levels are  thermalized,  and that  the 
excitation  temperature is equal to  the kinetic temperature.  This  important  assumption also 
deserves investigation. 

In Section 2 of this  paper we review the relationship between line emission and  the observed 
antenna  temperature,  and discuss various limiting cases. In Section 3 we investigate how 
the  integrated intensity, the  upper level column density, and  the  total molecular column 
density are  related in various situations.  In Section 4 we discuss the Population  Diagram, 
and  the effects of finite  optical depth when level populations  are in LTE. We treat  the case 
of linear molecules in  some detail  as  analytic expressions are  straightforward to  obtain,  and 
use methanol as an example of a more complex molecular species. In Section 5 we consider 
non-LTE  excitation for both linear and more complex molecules, and discuss effects on 
the  population  diagram. In  Section 6 we discuss some uses of the population diagram  and 
indicate  some of the advantages it offers  for determination of the hydrogen density from 
multi-transition  observations of molecular clouds. 

2. Line Emission and Antenna Temperature 

2.1. General Relationships 

The  antenna  temperature Ta produced at  a frequency v by a source having brightness 
distribution &(e, 4) is given by 
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where P,(O, 4) is the normalized power pattern of the  antenna.  This function describes 
the relative  response of the  antenna  to signals  coming from different directions, 
normalized such that on boresight, the direction of maximum response, P,(O, 0) = 1, 
and J4.rr P,(O, 4)dR = ARa, the  antenna solid angle. The integral  in  equation 1 can  be 
conveniently expressed in terms of a source-antenna coupling factor if the source and 
antenna power pattern have some symmetry or  other simplifying properties.  Two  limiting 
cases illustrate  the behavior of equation 1: a point source and uniform emission filling the 
antenna  beam. 

Taking the solid angle  subtended by a “pointlike” source to be much  smaller than Ail,, we 
can  take P, to be equal to unity over the solid angle of the source. Further, if the source is 
uniform, B,, can be removed from the  integral, which is then  the source solid angle A!&. In 
this  situation we can  write 

where the expression in  square  brackets is the  beam dilution  factor. 

From the  “antenna  theorem”  (Kraus 1966), A,AOa = X2,  so that we can  rewrite  equation 2 
as 

AQS 
AOa 

Ta = (X2/2k)[-]Bv. 

If an extended  source is uniform over the  antenna solid angle, we can  take B, out of the 
integral  in  equation 1, which then becomes AO,. The  antenna theorem then gives us 
T’ = (X2/2k)B,,. The beam  dilution  factor is thus much less than unity for very small 
sources, and reaches a maximum value of unity for an extended, uniform source. 

The brightness  produced by a source at temperature T having optical  depth r is 

However, for reasons that will become clear momentarily, it is convenient to write  this  as 

We can  write  the  optical  depth of the  transition as 
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h 
Av 

7- = -NuBul[ehu/kT - 

where B,l is the  Einstein B-coefficient for the  transition,  and Av is the line width in 
velocity. (More  exactly, we should employ the line profile function  evaluated at  the peak of 
the line, but  this is very close to Av-l for a  Gaussian  or  similar  line profile.) 

11 7 (6) 

Substituting  equations (6) and (5) 
BUl = Au1c3/87rhu3, we obtain 

T, = 

Note that  this expression does not 

into  equation (3), together  with  the  relationship that 

hc3 N,Aul AR 1 - e-T 
8rku2 Av [>I AR, [ 7- 3.  
explicitly  include the  temperature of the source. 

We can  invert  equation 7 to yield an expression for the  upper level column  density  in  terms 
of the observed quantity, T,. It is often convenient to consider the integrated  line  intensity, 

which in  our usage is just T,Av, to obtain 

87rku2W AR 
Nu = 

hc3Aul An2, 1 - e-T E I .  

2.2. Limiting  Cases 

Different analysis  techniques,  including  population and  rotation  diagram  analysis, have as 
inputs  the  upper level column  density. It is a considerable  simplification to make the two 
assumptions  that: (1) the source fills the beam, and (2) the emission is optically 
thin. If these  are  both satisfied, each of the two expressions in  square  brackets  in  equation 
9 is equal to unity, and we obtain  the relationship 

which can often be found in the  literature. We define yu to be the  combination of constants 
relating  the  integrated  intensity  and  the  upper level column  density in this  limit.  Thus we 
have 
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and 

Nu - 'yuw. thin - 
(12) 

This useful result  can also be obtained  starting with the basic definition of brightness of an 
optically thin source  ignoring  any background radiation, 

Aul Nihin hv Aul Nib'" hc B, = - - 
41r Au 41rAv 

This yields 

hc3A Nthin 
u T, = 

4ru2Av ' 
or 

which is just  the inverse of equation 12. 

If the first assumption is not valid and  the source does  not fill the  beam,  then  the correct 
upper level column  density is greater  than  that  obtained assuming the  beam  to  be filled 
by a factor  equal to AR,/AR2,. This correction  can be substantial, but can  only be  tested 
definitively by observing  with higher angular  resolution. In this section, we will assume 
that  the source  uniformly fills the  antenna  beam,  and  return  to  this issue in Section 6.2. 

We  now consider possibly optically thick emission, but since we are assuming that  the 
source does fill the  antenna  beam, we set ARa/AO2, = 1 in equation (9). We define the 
optical  depth correction  factor C,, 

and we find that 

Nu = T ~ W C ,  = N:hinC,. 
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The optical  depth correction  factor defined here is greater  than or  equal to unity. It is the 
factor by which the  upper level column  density derived from observed integrated  intensity 
W would appear to be  too small as a result of the finite optical  depth. Hence, to  obtain  the 
correct value of Nu, we must  multiply Nihin by C, as indicated in equation 17. 

Direct determination of the  optical  depth by comparison with emission from other 
isotopomers,  measurement of hyperfine ratios, or other means, is rarely  straightforward. 
We  will show below,  how the  ”population  diagram” can also be used as a diagnostic of the 
optical  depth of the emission. 

3. Relating Upper Level  and  Total  Column Densities 

To understand different possible behavior in the  “population  diagram”, we need to be  able 
to calculate W for each level, and  then see what value of Nu is found and how it  depends 
on the energy of the transition, as well as on other factors. 

3.1. Non-LTE Excitation 

In  the case of arbitrary  excitation, a different temperature may  characterize the population 
of each level relative to  that of the ground state or  relative to  that of any other level. The 
excitation  temperature T,, is defined by the relative  populations  or  column  densities of any 
two levels i and j of statistical weights gi and gj  and energies Ei and Ej relative to  an 
arbitrary common reference, through 

The excitation  temperature can be defined whether  or  not the two  levels in question  are 
connected by a radiative  transition,  although  it is only in this  situation  that T‘, can  be 
directly  measured. 

3.2. LTE 

For a molecule in local thermodynamic equilibrium (LTE), all excitation  temperatures  are 
the  same,  and  taking  this  to be given by T ,  the population of each  level  is given by 

N - --Sue- , E, /kT  
u -  z 
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Z = Ni. (20) 
all levels 

In LTE it is straightforward to  obtain  the  total molecular column  density  from the  column 
density of any  individual  transition if T is known. If the molecule’s transitions  are  not 
thermalized, the fractional  population of a given  level can be greater  or less than  that in 
LTE, so it is difficult to make a general statement  about how the  determination of the  total 
column  density is affected. We will return  to  this topic  in Section 5. 

4. The Population Diagram 

A population  diagram  can be useful to assess whether the emission is optically  thick  or thin, 
whether the level populations  are described by LTE, and  to  determine  what  temperature 
describes, the  population  distribution in the event that LTE applies. 

4.1. Population Diagram  and LTE 

The  “traditional”  rotation diagram is based on  the supposition that all level populations 
are described by LTE. We then  rewrite  equation 19 to obtain 

We can also include the possibility of finite optical  depth explicitly using equation 17 

K h a n  Eli 
su  kT 

In - +lnC, = 1nN - 1nZ - -. 

If the  optical  depth is small, C, is unity, and from equation 17, Nu = Nihin. Thus, 
the  logarithm of the  upper level column  density  per  statistical weight does  show  a  linear 
dependence  on upper level  energy. This is directly  translatable to  an observational 
relationship through equation 10, giving us 

Yu w E, 
su kT 

In - = l n N - 1 n Z - - .  
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If the  optical  depth is not small  compared to unity, then we must use equation 22, which 
can be written in terms of the observed W as, 

'YU W E U  

gu k T  
In-=lnN-lnC, -1nZ--  

If  we were not aware of the finite  optical  depth  and  thus took C, equal to 1, each of 
the  upper level populations would be underestimated by a factor C,. The  ordinate 
of the  population  diagram would consequently be below its correct value by an  amount 
lnC, = In+. 

4.2. Optical Depth for Rotational Transitions of Linear Molecules 

For a linear molecule we can  label each state by its  rotational  quantum  number, J ,  its 
energy, EJ = hBo J ( J  + l), and  its  statistical weight, gJ  = 2J + 1. The frequency of the 
transition J + J - 1 is given by Y J , J - ~  = 2B0J,  the corresponding  Einstein A-coefficient is 
given by 

64,rr4u3p2 J 
AJ,J-I = 3hc3 2J + 1' 

and  the  Einstein B-coefficient is 

8,rr3p2 J BJ,J-l = -- 
3h2 2 J +  1' 

We can  write  the  optical  depth of the  transition J + J - 1 as 

8,rr3p2 Je -aJ (J+l )  2aJ - TJ,J"1 = --- 
3h A v Z  (e  1) * 

4.3. Linear Molecules  in LTE 

If LTE applies, and we are in a relatively warm cloud so that k T  > hBo, making  the 
substitution u = J (  J + 1) and defining 

we can transform  the  partition function  into an integral: 
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This yields the  simple result that Z = a-1 = kT/hBo,  which  is surprisingly accurate even 
for temperatures  as low as T - Bo/2k .  

The  variation of r as a function of energy and J for a linear molecule in LTE is given by 
equation (27) with 2 = a"'. It is shown in Figure 1, which gives the relative values of the 
optical  depths of the different transitions as a function.of J of the  upper level. 

For a < 1,  the  optical  depth  exhibits a peak at a value of J which we take to  be equal to 
Jmax  r .  If we are  in  the  limit a Jmax < 1, the value of Jmux is given  by 

Jmax 7 = 1 / J a  = dkT /hBo .  (30) 

The energy of the  transition having  maximum  optical  depth is just E,,, - - 
hBo J,,, T (  J,ax + l ) ,  and for Jmax > 1, we find the plausible  result that 

E m a x  7 = kT  

The frequency of the  transition of maximum  opacity is then 

vmax 7 = 2Bo Jmax 7 = 2Bo/Ja* 

A convenient conversion factor is 

u = 0.048Bo(GHz) /T(K)  

so that 

(33) 

These  expressions give an idea of which transition, at  what frequency, will suffer the  most 
from the effect of optical  depth. For example, for HCSN having Bo N 4.6 G H z ,  for T = 10 
K ,  Jmax = 7 and vmax = 61 G H z .  This suggests that for somewhat  warmer  clouds, the 
X 21 3 mm transitions of this molecular species will be the most affected by optical  depth 
effects. 
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4.4. Effect  of  Optical Depth and The Optical Depth Correction  Factor for 
Linear Molecules  Having Finite Values  of r 

In  Figure 2 we present  population  diagrams  calculated for the molecule HC3N,  which 
has  rotation  constant Bo = 4.55 G H z  and  permanent  electric  dipole  moment p = 3.72 
D (Lafferty & Lovas (1978)). For the example shown with T K =  22K, a = hBo/kT = 
0.01, and a hydrogen density of lo9 ~ 7 7 3 ~ ~  is  sufficient to thermalize  all of the  transitions 
with significant population.  These  calculations were carried out using a large velocity 
gradient  radiative  transfer code, for which, in addition to  the hydrogen density  and  kinetic 
temperature,  the  input needed is the  fractional  abundance  per velocity gradient of the 
species being  studied.  This  quantity, when multiplied by the hydrogen density,  is equal 
to  the column  density of the species in question  per unit line width, which determines 
the  optical  depth  in  any model. A velocity gradient of 1 krns-llpc or line width  equal 
to 1 k m  s-l and size equal to 1 PC are  typical for molecular clouds, and  in  this case the 
fractional  abundance  per  unit  line  width is numerically  equal to  the fractional  abundance 
itself. We shall in the following refer to fractional  abundances  rather than fractional 
abundances  per  unit  line  width, when there is no  danger of confusion, and  adopt a line  with 
of 1 k m  s-l where a specific value is  required. 

For the lowest value of the  fractional  abundance, we do indeed see a linear  curve 
as expected  from  optically  thin emission from a molecule in LTE. When the fractional 
abundance is increased by a factor of 10, the curve has moved up by  close to  this  factor, 
and is still  nearly  linear. As the  fractional  abundance increases further,  the curves  become 
highly  nonlinear  and lie well  below the values that would be  extrapolated from the  optically 
thin  results.  The divergence from  linear  behavior  is  most  striking for transitions  with 
3 5 J, 5 12, which is the range for which the  optical  depths  are largest. *. 

Once a particular  transition  has become optically  thick, the value of y,W/g, cannot 
increase further,  and in comparing  the  results for the two largest  fractional  abundances, we 
see that  there is a small change only for the J = 1 + 0 transition, which has  the lowest 
optical  depth of all  those considered. Thus, changing the HC3N fractional  abundance  from 

to has essentially no effect, as all  transitions  are  already  optically  thick for the 
lower value. 

The limiting form of the  population  diagram when all  transitions  are  optically  thick  is 
determined by the  fact  that  the  antenna  temperature is that produced by a blackbody.  In 
the Rayleigh-Jeans limit,  this yields (with a defined in equation 28) 

yW 2Av 1 
" - " 

gu 167r3p2 aJ2 ' 
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where 6v is the line width.  The nonlinear  behavior on the semi-log plot  can have several 
different effects, which appear even  in the case for moderate  fractional  abundance when 
all  transitions  except for the lowest and highest are optically  thick.  From  Figure 2, with 
incomplete and necessarily imperfect data,  it would be possible to conclude that two 
different temperature  components were present, while in fact  one is seeing the effect  of 
the finite opacity. For  example,  with X = if one fits the five  lowest transitions,  one 
obtains  an  anomalously low temperature of 6.5 K ,  while using the five highest transitions 
included in Figure  2,  one  obtains  the  erroneously  high value of 51 K (compared to  the 
actual value of 22K). This effect is even more  extreme for higher optical  depths,  and while 
the predicted  intensities for  lower  values of J are less linear, it would be possible to  think, if 
one were not aware of the large values of the  optical  depth,  that a fraction of the gas were 
thermalized at a very low temperature. For very high values of J ,  the level populations 
drop  and  the  transitions become optically thin, which results in these  points falling on a 
line  consistent with  the correct temperature. 

If not  properly  accounted for, the finite optical  depth  results in an  underestimate of 
the  total molecular  column density. The  situation is  complicated by the  fact  that a 
linear fit would evidently  not  be  satisfactory for the full range of transitions included  in 
Figure 2.  If  we ignore the finite  optical  depth, we would  use equation 21, which gives 
that  the value of the  ordinate  extrapolated  to zero upper state energy is equal to N/Z .  
The different temperatures  that one would derive from straight lines fit to  the different 
sections of the curve  also  enter through  the  fact  that  the  partition function  is proportional 
to  the  temperature derived. For a fractional abundance  per  unity velocity gradient of 
10-13(kms-1/pc)-1 and a line width of 1 krns-l, the  total HC3N column  density is 
3.08 x 1014 cm-2. Using only the  data from the lower J transitions, we find Zn(N/Z) equal 
to  28.7, and  with  the derived temperature of 6.5 K ,  we obtain N = 9 X 1013 crn-2. Forthe 
highest five transitions, we obtain, with the derived temperature of 51 K ,  N = 1 X 1014 
cm-2. 

In  both of these  cases we have assumed that all levels are characterized by the  parameters 
derived from the  limited  range of J .  The lower transitions give an  intercept which is not  far 
from the value extrapolated from optically thin results, but  the erroneously low temperature 
results in a column  density which  is too low  by almost a factor of 3.5. If the higher J 
transitions  are  used, the intercept is dominated by these very optically  thick  lines, and  the 
erroneously  high temperature only  partially  compensates,  with  the final result  being too 
low  by approximately a factor of three. The maximum value of r in this  example is 3.8, and 
from  equations 16 and  17, we would anticipate an underestimate of the  upper  state  column 
densities in the  middle J range of approximately  this  factor. We see that since  these levels 
are those which do have a large  fraction of the  total molecular population,  the  total  column 
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density is underestimated by a factor only slightly less than  the peak  optical depth. 

In Figure 3 we show more generally the effect of omitting  the optical depth correction factor, 
in terms of how it would  affect the left hand side of a  population diagram such as  that 
indicated  in  equation 24. If  we ignored the finite optical  depth issue, the observationally 
determined  integrated  intensities  directly give the  upper level column  densities, which 
would exhibit a Boltzmann  distribution, characterized by a straight line on a semi-log plot. 
We have plotted  the negative of the  natural  logarithm of the optical depth correction  factor 
so that  the  appearance of the curves mimics the effect on the relationship  in a population 
diagram. 

Figure 3 shows C, for three different values of hBo/kT, which  is equal to 0.001  in  Figure 3a, 
0.01 in  Figure  3b, and 0.1 in Figure 3c. The energy of the  transition having the  maximum 
optical  depth is always given by equation 31. We see that  the form of the  variation of C, as 
a function of optical  depth is essentially independent of E,/kT, but  that  the  quantitative 
behavior does depend on this  parameter. For fixed molecular parameters  and  column 
density, the maximum value of r varies as a (in the limit a < 1). However, the optical  depth 
of the J = 1 to J = 0 transition varies as a2 /e  in this  same  limit, so that  the  ratio of the 
optical  depth of the  most optically thick transition  to  that of the J = 1 to 0 transition  is 

again  in  the  limit a < 1. This result is confirmed by numerical calculations to be  quite 
accurate for a as small as 0.1. For a given value of r1,0, as a (= hBo/kT) increases, the level 
having  maximum r decreases, as does the  maximum value of r. Hence, for the  same value 
of r1,0, the correction  factors seen in  Figures 3b  and 3c are closer to unity than those in 
Figure 3a. 

4.5. Nonlinear Molecules in LTE 

A wide variety of molecules have been detected in interstellar  clouds,  with  many  having 
more complex energy level structures  than  the simple  linear molecules discussed above. In 
general, there can  be several transitions from a given state,  and  the dependence of transition 
frequencies on the energy of the  upper  state is more complex. 

Here we give some  results for the E species of C H 3 0 H ,  a molecule that has  relatively 
large abundances in dense clouds, and has been found to have an enhanced abundance 
in outflows. The energy levels, labeled by J and K ,  are shown in Figure  4,  along  with 
representative  transitions, which obey the selection rules AJ, AK = 0, f l .  However, due  to 
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the  asymmetry in the energy levels with  respect to  the sign of K ,  “ladders”  having different 
values of K have quite different arrangements of allowed transitions. In particular,  states 
with K = 3 and K = -3 (excepting the lowest ones) have (in  addition to a transition with 
A K  = 0), two strong downwards  transitions  with relatively large frequencies, resulting  in 
total spontaneous decay rates between 10-3s”  and 10d2s-l for the levels considered here, 
The K = -1 levels have, in contrast, only two downwards  transitions  and  total  spontaneous 
decay rates  that  do  not exceed a few x ~ O - ~ S - ~ .  As a result,  the H2 densities required to 
thermalize the various level populations  are  quite different. 

The different transitions also have very different absorption coefficients, so that their 
optical  depths vary considerably for a given molecular abundance. With  the collision rate 
coefficients adopted  here (discussed in Section 5.3) hydrogen densities  greater than lo9 
~772”~ are required to bring  all of the  transitions considered here into LTE. Population 
diagrams for n(H2) = lo9 cm-3 as a  function of fractional abundances of C H 3 0 H  are 
shown  in  Figure 5. As for the previous example, we adopt a velocity gradient of 1 
krns-l/pc and a line width of 1 k m  s-l , and refer to  the fractional  abundances, which are 
numerically equal to  the fractional  abundances  per  unit velocity gradient. For the lowest 
abundance considered in Figure 5 ,  X ( C H 3 O H )  = all transitions  are  optically  thin 
and we obtain a straight line corresponding to  the kinetic temperature of  50 K .  Note that 
since all  opacities are << 1, the various transitions  with  a  common  upper level all appear as 
a single point on the  straight line. As the fractional abundance increases, the  transitions 
with  greater  absorption coefficients become  optically  thick, and for X ( C H 3 O H )  = 
we see that a number of transitions have upper level populations significantly below those 
extrapolated from optically thin results. For X ( C H 3 O H )  = we see a greatly  enhanced 
apparent  “scatter”  in the population  diagram, since some  transitions have clearly reached 
their optically thick limiting value, while others, defining the  upper edge of the envelope, 
are  still close to being  optically thin. 

For a species with  complex energy level structure such as CHSOH, it is difficult to  draw 
simple, general conclusions about  the effect of finite r ,  as is possible for linear molecules. 
Our modeling suggests that optically thick emission even in LTE can significantly increase 
the  scatter in the  data if a mixture of thin  and thick transitions  are  included. Given that  the 
transitions we consider cover frequencies between 6.9 G H z  and 633 G H z ,  actual  data  sets 
may  not see only an increased scatter,  but could instead  indicate  erroneous temperatures 
and column  densities, depending on which particular  transitions  are  included.  Thus,  the 
potentially  deleterious effect of uncorrected optical  depths should not be ignored for more 
complex molecules. 
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5. Non-LTE Excitation 

We next  examine what happens if the hydrogen density is  insufficient to  thermalize  some, 
or  all of the  transitions, so that  the  populations of the energy levels  used in forming the 
population  diagram  cannot be described by LTE. We restrict ourselves again only to  the 
case of HC3N as representative of linear molecules, and CH30H as an  example of more 
complex molecular species. 

5.1. Linear Molecules 

For the calculations described in this section we have used the collision rate coefficients 
of Green & Chapman (1978), which include the lowest 24 levels of HC3N.  We have not 
explicitly  included a correction for HZ rather  than H e  as collision partner, which would 
reduce the  actual  density corresponding to each density given  by approximately 50 percent. 
In  Figure  6 we show results for densities between lo3 and lo8 ~ r n - ~ .  The fractional 
abundance of HC3N per  unit velocity gradient is 10-15(kms-1/pc)-1 which results  in 
all transitions being  optically thin for all Hz densities. For densities 2 lo6 , the 
populations of the levels considered here are  thermalized, so that  the population  diagrams 
are essentially straight lines corresponding to  the kinetic temperature of  22 K .  

The behavior for  lower densities is more  surprising, however. While none of these  curves 
forms a perfect straight line as do  the ones for higher densities, for a significant range of 
energies (excepting the lowest transitions), each can  be fit satisfactorily  with a straight 
line. The  temperatures implied are 6 K for n(H2) = lo3 ~ r n - ~ ,  7 K for n(H2) = lo4 c ~ z - ~ ,  
and 8 K for n(H2) = lo5 ~ r n - ~ .  All of these  are decisively subthermal,  and yet it would 
be difficult to recognize this unless we had  data  that included the  transitions for J 5 6 
and J > 20.  However, the  latter would be relatively weak under  these  conditions, and  thus 
difficult, or  impossible, to observe. 

The results seen here are unexpected because the range of spontaneous decay 
rates for the levels considered here is  very large.  From  equation 25  we find that 
Al,O = 4 x 10-8s-1, = 1.1 x 10-5s11, and A20,19 = 4 x 10-4s". Thus,  the  transitions 
which have an excitation  temperature which is considerably less than  the kinetic temperature 
cover a  range in spontaneous decay rates of approximately 50.  Naively, one might  expect 
that since the  transitions  are neither  totally unexcited nor thermalized,  those  with  higher 
spontaneous decay rates would have lower excitation  temperatures,  as  the collisional rates 
are essentially independent of the  rotational  quantum number of the  initial  state. 

The  quite different behavior that we find  is a result of the  manner in  which the A- 
coefficients, transition frequencies, and collisional rate coefficients depend on J .  For linear 
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molecules, a general result is that  the  excitation  temperature is not a monotonically 
decreasing  function of J ,  despite the fact that  the A-coefficients vary as J 3 .  Rather, T', can 
be largely independent of J or even increase with increasing J ,  for conditions of relevance 
in interstellar clouds. This produces the "quasi-thermal" linear curves in Figure 6, with 
excitation  temperatures much less than  the kinetic temperature. Collisional cross sections 
which emphasize transitions in which J changes by several units  enhance this effect. The 
issue of the dependence of the  excitation  temperature on J is discussed further in the 
Appendix. 

5.2. Non-LTE Excitation and  Optical Depth Effects for Linear Molecules 

We next consider non-LTE effects together  with finite optical  depths. The combination is 
significant because the  absorption coefficients for the lower J transitions  become  larger  when 
the hydrogen density is low, and  the molecular population is concentrated  in  these levels. 
As shown  in  Figure 7, the effect is largely what one might expect from the combination 
of the two separate circumstances.  At the lower density, n(H2) = 104crn-3, considered 
here, the  greatest  optical  depth occurs for 5 5 J, 5 9, so these  transitions  are  the first to 
deviate  from  the quasi-thermal  excitation curve as the fractional abundance of HC3N is 
increased. There is a range of HC3N fractional  abundances  per unit velocity gradient, 
starting at X ( H C 3 N ) / d v / d z  = 10-7(krns-1/pc)-1, in which the slope of the  excitation 
curve,  in the range of transitions lying somewhat above those  having  maximum  optical 
depth, is increased by the  radiative  trapping.  Thus,  the excitation temperature  that would 
be derived from these  transitions is enhanced by the  trapping.  This  situation is restricted by 
the radiative  thermalization that is produced when the optical depth reaches a sufficiently 
high value, with  the  excitation curve approaching the limiting form determined by  blaCk 
body emission, as discussed in Section 4.4. 

5.3. Nonlinear  Molecules 

Non-LTE  excitation for nonlinear molecules  is more complex than for linear species. We 
again consider E-type  methanol as a  representative example. We have used the collisional 
rate coefficients of Peng & Whiteoak (1993), which are  not rigorous calculations,  but which 
should  be  satisfactory for our  purpose. Our results do not  demand  detailed  modeling of 
the behavior of any single transition.  Results for three hydrogen densities are shown in 
Figure 8, for which all  transitions  are  optically  thin.  The CH30H fractional abundance 
per  unit velocity gradient is (krns-'/pc)-l, and we have  used a line width of 
1 krn s-l to form the population  diagram. This is equivalent to N ( C H , O H ) / A u  = 
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3.084 X 104n(H2) (~m-~/lcms").  

For the lowest density of lo6 cmb3 we see a clear segregation of the  points according to 
the  K-ladder of the  upper level  of the  transition. The lowest set of points  corresponds to 
K = -3, the next to K = +3, and  the next to K = -2. The  transitions from states  with K 
= +2, +1, and 0 comprise the cluster of points at  somewhat higher values of integrated 
intensity, while the K = -1 transitions fall on a straight line just above this. The levels 
with different J for a given value of K all have the  same  excitation  temperature at each 
hydrogen density,  with T,, N 31K for nH2 = lo6 ~ m - ~ ,  Te, N 45K for n~~ = 107.5 ~ r n - ~ ,  
and T', = T k  = 50K for n~~ = lo9 ~ r n - ~ .  The large scatter in the  population  diagram can 
thus  be  an  indication of subthermal  excitation. Again, however, a large  range of transitions 
must  be observed to determine  this unambiguously. 

6. Discussion 

In the preceding discussion, we demonstrated that a generalization of the  traditional 
rotation  diagram  approach improves the  capability for analysis of multitransition data   to  
determine  excitation  temperatures  and molecular column densities. Careful  consideration 
of the effects of optical  depth  and non - LTE excitation offer the possibility of improved 
accuracy, as well as  understanding some of the  apparently surprising  behavior seen in 
various observational  studies. Here we review and comment on some  earlier work using 
the  population  diagram  method, discuss how these  results might have to be modified in 
light of our  population  diagram  analysis, give a specific example, and discuss the effects of 
clumpiness. 

6.1. Use of the Population Diagram 

Results from the early  spectral surveys of Linke, Frerking, & Thaddeus (1979) and Frerking, 
Linke, & Thaddeus (1979) indicated that populations of a number of levels of several 
species were described by a single, but very  low, excitation  temperature.  Although we have 
not  analyzed the molecular species observed in  these two investigations, we believe that 
their  results  can be satisfactorily explained in terms of subthermal  excitation in a region of 
moderately high kinetic temperature, consistent  with other information about  the Sgr B2 
molecular cloud ( c f .  Lis & Goldsmith 1990). Working  with a larger data base of molecular 
lines in the 3mm wavelength range  and using a  population  diagram  analysis  Turner (1991) 
.derived both kinetic temperatures  and molecular column densities. He also recognized 
the effect of saturation for some species. While some species could be fit with a single 
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temperature  others required two temperature regimes if one assumed  only a linear fit. 

There have also  been several extensive spectral line surveys at shorter wavelengths used 
to derive temperatures  and densities using the  population  diagram  approach. Serabyn & 
Weisstein (1995) studied SO, among  many  other species, and found that analysis of the 
common 3 2 S 0  isotopomer,  assuming  optically  thin emission, required that  there  be two 
different temperature components. However, observations of the less abundant 34S0 species 
indicated that some  transitions of 32S0 were optically  thick. The analysis of 34S0 was 
consistent with a single temperature,  and allowed these authors to  determine  the  optical 
depths of transitions of the more abundant species. Adopting  this  correction,  the 32S0 
population  diagram was consistent  with a single temperature of 83 K ,  reasonably close to  
the 100 K derived  from the 34S0. This  study clearly indicates  the significance of optical 
depth effects,  which may  be  considerably  more widespread than  can  be  immediately obvious 
from  observations of a few transitions of a single  isotopomer. 

Sutton et al. (1995) analyzed  numerous  molecular  transitions  in the vicinity of the 
Orion-KL  core and found that different species, a s  well as different isotopomers, gave 
significantly different temperatures, when analyzed using the  rotation  diagram  approach 
assuming  optically thin LTE emission. These  variations may be  due  to a significant extent 
to  the effects of saturation in the  more  abundant species, and to  subthermal  excitation as 
discussed above. 

In  their  study of the disk-outflow system  IRAS 20126+4104, Cesaroni et al. (1997) 
analyzed emission from  transitions of CH3CN and CH30H using a population  diagram 
approach.  In  their  analysis of the CH30H J = 3 + 2 and J = 5 + 4 transitions,  these 
authors  adopted a single temperature optically thin fit to derive a rotation  temperature of 
50 K .  However, inspection of their  Figure  14  suggests that optical  depth effects are likgly 
playing a major role in  producing a systematic  deviation from the  expected  linear Zn(N,/g,) 
versus E,, relationship.  In  their  analysis of CH3CN data, a correction for saturation of the 
ground state lines was applied, which did have the effect of reducing the derived excitation 
temperature from 260 K to 150 K .  

Other uses of the  population  diagram  approach have tended to focus on molecules with 
complex  energy level structures  and which hence have many accessible transitions in a 
limited  frequency  range. We note in this regard that  the results of Blake et al. (1994) 
for SO2 are suggestive of saturation  producing  systematic  deviations from  optically thin 
behavior, while the CH30H results of van  Dishoeck et al. (1995) exhibit  exactly  the  kind of 
scatter seen in Figure 5 here, which  is also a consequence of saturation of the  stronger lines. 
Bachiller et al. 1995 used CH30H to  probe  the young molecular outflow in  L1157, and 
derived temperatures of 8 K for the  ambient gas and 12 K for the outflow. The significance 
of the  temperature difference is probably  limited by uncertain effects of saturation, which 



- 20 - 

the limited data set  makes difficult to assess. 

These  examples  suggest that close attention  to  the effects of saturation  and  non-LTE 
excitation as discussed here, can only serve to increase our confidence in the molecular 
column  densities and  temperatures derived from multi-transition  observations. 

6.2. Analysis  of  Clumpy  Regions 

Most of the discussion so far  has assumed that  the source fills the  beam.  There  are  many 
cases, however, where this is not likely to be the case, and indeed molecular clouds are 
known to be very clumpy on all scales, with significant chemical inhomogeneities. For 
example, the early  observations on Sgr B2 were made  with spatial resolutions  on the order 
of a parsec. It is unlikely that  the trace molecules observed by Linke, Frerking, & Thaddeus 
(1979) and Frerking, Linke, & Thaddeus (1979) fill the volume within the  beam size used. 
If the emission is optically thin or if  we can derive the optical depth correction factor,  then 
the only  uncertainty  in using the population diagram approach is that  the column  density 
needs to be scaled upwards by the factor [ARa/ARs]. The problem we face  with emission 
from  a  clumpy  or unresolved region is that  the  antenna  temperatures (or intensities)  are 
reduced by the  beam  dilution  factor (or clump filling factor). Therefore we might detect 
weak emission with TA << T k i n ,  and believe that  the emission is optically thin. In the case 
where LTE applies, it is a simple matter  to modify equation 24 to include a constant offset 
due  to  beam  dilution, 

7uw Ana E U  In - = I n N  - In[-] - lnC, - I n 2  - -. 
Qu An8 k T  

As this  beam fill& factor does not change the  shape of the  population  diagram curves, 
the analyses discussed above hold here. Independent  observations are required to  obtain 
an  estimate of the molecular column  density  in the “filled” region, as  distinguished from 
the beam-averaged column  density which is obtained by assuming the  dilution  factor to  be 
unity. 

6.3. Application of the Population Diagram  for Determination of Molecular 
Hydrogen Density 

The discussion of Section 5 indicates that  there is  well-defined behavior under non-LTE 
conditions which, in fact, makes the population  diagram technique an important one  for 
determination of the density  as well as the column density, if we have observations of 
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transitions that are  not  thermalized.  Together  with the more  evident  ability to diagnose 
the gas temperature,  this means that  the  population diagram  technique  can  be used as an 
effective means of tracing two  key physical conditions in molecular clouds. Here, we discuss 
in  more detail  an  example applied to CS data in two giant molecular cloud cores obtained 
by Snell et al. (1984). This includes observations of the 2 + 1, 3 + 2, 5 + 4,  and 6 + 
5 transitions,  with  upper level energies between 7.1 and 49.6 K above the  ground  state. 
The Snell et al. (1984) data for the  central positions of the sources S140 and NGC2024 are 
plotted in Figure 9. 

Several things  are  immediately  evident  from the  plot.  First,  the  points  on  the  population 
diagram  do fall fairly well  on a straight line indicating an excitation  temperature of close 
to 13 K .  The  transitions  appear  to be optically thin, which  is consistent  with conclusions 
of Mundy et al. (1986) based on observation of C34S in the  same sources. The excitation 
temperature of 13 K is  far too low to really be indicative of LTE in the cores of these 
GMCs, so we see observational evidence for quasi-thermal excitation discussed in Section 
5 and  the Appendix. The kinetic temperature in  these regions can  be  determined using a 
variety of probes, but is likely in the range 30 to 50 K .  Model population  diagrams for these 
two kinetic temperatures are shown in the left and right panels of Figure  9, respectively, for 
5.75 5 10g(n(H2) /cm-~)  5 6.5. We have adopted a line width of 2 k m  s-.’ in  accordance 
with  the observations, and fixed the CS column  density to be N(CS)  = 1.09 x 1014 

The population  diagram analysis makes quite evident the  manner in which the slope of 
the  quasi-thermal  excitation curves (inversely proportional to the more-or-less uniform 
excitation  temperature of the  transitions considered here) changes as a function of kinetic 
temperature  and hydrogen density. We see a steady decrease in slope  (increase  in Tez) as 
the hydrogen density increases, and also that a given H2 density  produces a smaller  slope 
(larger excitation  temperature) for a higher kinetic  temperature.  From  Figure  9, we &e 
that a  density of 2 x lo6 c ~ n - ~  gives good  agreement  with the slope of the  data points for 
TI, = 30 K ,  while a density of 0.6 x lo6 produces a comparably  good fit for TI, = 50 
K .  This  column density has not been formally “best  fit”,  but has been chosen to  match  the 
data reasonably well. From both panels of the figure we see that N ( C S )  would have to  be 
slightly  smaller than 1014 c77%-” for both sources. 

The analysis by Snell et al. (1984) fitted the  antenna  temperatures directly, treating  the 
H2 density and CS column  density as independent variables, with the kinetic temperature 
determined  independently.  This  approach  does deal with the  data directly, and  the  estent 
to which the model and  the  data agree or disagree is clearly evident. The results  of  the 
fitting by Snell et al. (1984) and those given here above are  quite  consistent. We do not feel 
that there  should, in fact, be any  systematic differences  between the two approaches. 

The  population  diagram approach offers the following quite clear advantages: 
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1. There is the possibility of recognizing optical  depth effects directly from  the  form of 
the  data,  although  this will, in general, require quite  a  large  number of transitions 
spread over a  range of upper  state energies. 

2. The appearance of quasi-thermal excitation  immediately gives an independent lower 
limit to  the kinetic temperature. 

3. The trade-off between kinetic temperature  and hydrogen density is quite  evident, 
which is not at  all the case when fitting unprocessed data directly. 

4. If one can  demonstrate  that LTE does apply, then  the kinetic temperature  and  the 
total molecular column  density  can  be  immediately  obtained  with  good accuracy. 

5. The ability to recognize the presence of multiple  temperatures is a potential  advantage, 
but needs to be  approached  with  caution  in view of the concerns raised earlier about 
excitation  and  optical  depth effects. 

The population  diagram  and  direct  analysis  methods  both have the  quality of being able  to 
separate  the effect of column  density and space  density changes. In view  of its  advantages 
and lack of any apparent drawbacks, there  does  not  appear  to  be any reason not  to use the 
population  diagram  approach for determination of physical conditions in dense clouds from 
multi-transition molecular line data. 

7. Summary 

We have examined  in  some  detail  the  “rotation  diagram”for  analysis of multi-transition 
molecular emission data, which we feel  is better called the  “population  diagram”  technique. 
In  this  approach, the  natural  logarithm of the  integrated  intensity of each transition 
observed, multiplied by appropriate  constants, is plotted  against  the energy of the  upper 
level of the  transition.  The  traditional use of this  type of diagram  has been to assume that 
the emission is optically thin,  and  that LTE applies. In this  limiting case, the  integrated 
intensity is proportional to  the  upper level column density, and  the column  densities are 
related by Boltzmann  factors, so that  the locus of points on the  population  diagram  should 
be  a  straight line,  with slope proportional to  the negative reciprocal of the  temperature. A 
straightforward  generalization of this technique to include the  optical  depth 7, and  optical 
depth correction  factor C, = +, but  still  assuming  populations of all levels are in LTE 
at  temperature T ,  gives the relationship 

Y U W  E, In - = l n N - l n C , - I n Z - -  
su kT ’ (39) 
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where 7, is the combination of constants  relating  integrated line intensity  and  upper level 
column density, N is the  total molecular population, 2 is the  partition  function,  and E, 
the  upper  state energy. We have derived the correction  factor for linear molecules in LTE 
in analytic  form, and have used CHSOH as representative of more complex molecules, to 
show how saturation  can produce both  systematic  and  apparently “scatter-like” deviations 
from optically thin behavior.  These effects have been recognized to various degrees in 
papers  in  the  literature,  and we suggest that a more  systematic  approach to consideration 
of saturation effects could improve reliability of molecular column  density and  temperature 
determinations. 

We have examined the non-LTE behavior of linear molecules, and have found that  the 
apparent constancy of excitation  temperature  among levels with quite different spontaneous 
decay rates  can  be  understood in  terms of the frequency dependence of the  quantities 
involved. This quasi-thermalization at excitation  temperatures well  below the kinetic 
temperature explains  apparently  surprising  results  reported in the  literature. We have 
also examined  the  population diagram as a technique to determine molecular hydrogen 
densities, which involves comparison of the form of the population diagram curves with 
statistical  equilibrium/radiative  transfer  code  predictions.  This  approach  appears to offer 
several important  advantages compared to fitting  intensities  directly,  including  recognition 
of LTE, bounding  the kinetic temperature,  and clearly indicating the  interrelated effects of 
the kinetic temperature  and  the  excitation  rate. 

The National  Astronomy  and Ionosphere Center is operated by Cornel1 University under 
a cooperative  agreement  with the National Science Foundation. The research of WDL 
was conducted at the  Jet Propulsion  Laboratory, California Institute of Technology, with 
support from NASA research grants. 
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APPENDIX 
Quasi-Thermal  Excitation 

The curious behavior of the relative  intensities, and hence the level populations of linear 
molecules discussed in Sections 5.1  and  6.3 deserves some further  comment  beyond that 
appropriate for the  main  text.  The result suggested by Figure  6 is that  the excitation 
temperature can remain relatively constant,  or even increase as  the  rotational  quantum 
number J increases. This behavior is surprising because we know from equation 25 that 
the A-coefficients increase rapidly  with increasing J ,  so that in the case of subthermal 
excitation, we might think  that  the higher transitions  are  further  from  thermalization,  and 
hence their  excitation  temperatures  should  be lower. This proves not necessarily to be  the 
case, however. 

We can  gain  valuable insight into  this question by examining  initially a simplified version 
of the problem, which is  just  to consider a two level system. However, it should  be  borne 
in  mind that  this is also  directly  applicable to  the case of a linear molecule provided that 
the collisions connect only adjacent levels, e.g. are "dipole collisions". This behavior is not 
a precise description for most molecular species interacting  with  neutral collision partners, 
but  the behavior that is found shows the  same basic characteristics as that obtained  from 
multilevel statistical equilibrium  calculations using computed collision rates which allow 
collisions with a range of AJ .  

In the case of dipole collisions, as discussed by Goldsmith (1972), the relative  populations 
of each pair of levels is decoupled from that of other levels. If  we neglect the background 
radiation field, we obtain from the  rate  equations  that  the  excitation  temperature is given 
by the expression 

Defining 

Au1 

Cur 
x = - -  

and 
hu K = - ,  
kTk 

we obtain  the simple and convenient expression 

1 - Tex = [l + Tiz"(l + x)]" * 

T k  
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x and K can  be considered independent variables that determine  the T e ,  as a ‘fraction of 
T’. The  relationship is shown in Figure A l ,  in which the different sets of points  correspond 
to different values of K ,  as a  function of x .  We see that for a given value of K ,  T e ,  as a 
fraction of T h  increases monotonically as x drops, which corresponds to moving closer to 
thermalization  as  the  ratio of the collision rate  to  the spontaneous decay rate increases. For 
a fixed value of x ,  Te,/Tk increases as K increases. Thus, for a fixed ratio of spontaneous 
decay rate  to collisional deexcitation rate,  as  the  transition frequency relative to  the kinetic 
temperature  (both expressed as energies) increases, the  excitation  temperature relative to 
the kinetic temperature also increases. If  we consider a fixed kinetic temperature,  as  the 
transition frequency increases, K increases, and  thus so does the  excitation  temperature. 

This really reflects the definition of the  excitation  temperature in terms of a Boltzmann 
factor  relating the  upper  and lower  level populations (c f .  equation 18). A fixed kinetic 
temperature  and x mean a fixed ratio of upwards to downwards transition  rates, which from 
the basic definition of the  rate  equation  translates  to a fixed ratio of transition frequency 
to excitation  temperature.  Thus a greater  transition frequency requires a higher  excitation 
temperature  to achieve the same  ratio of level populations,  and vice-versa. 

If we consider the  situation with the  transition frequency fixed, as the kinetic temperature  is 
increased, K decreases, but  the  fact  that Te,/Th rises in consequence does  not immediately 
indicate  what  happens to  the excitation  temperature itself, If we consider the limit 
hv << kTk ,  for x not  too small ( i e .  if  we are  not  too close to LTE), equation 4 becomes 

hv/k T -  - Zn(1 + x )  * 

We see that in this  limit,  the  excitation  temperature is independent of the kinetic 
temperature.  Thus  the  sets of points for different values of 2og K at a fixed x ,  which are 
separated by 0.5 dex, give values of Zog(T,,/Tk) which  differ by this  same  factor. 

The  situation for a linear molecule with  a  “ladder” of transitions is somewhat  more involved. 
As the frequency and  spontaneous decay rate  both  depend on the  transition in question, K 
and x are  not  independent variables. Knowing the variation of frequency and  spontaneous 
decay rate as a function of J ,  it is possible to see how the various transitions of a  linear 
molecule are  located  in  Figure A l .  It is more convenient, however, to express K and x in 
terms of parameters  that characterize the J = 1 + 0 transition,  through 

K = K I J ,  
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and 

where 

3 J4 
2 J + 1  ’ x = x 1 -  

and 

We assume that all  transitions  are  characterized by equal  deexcitation rates, which is 
reasonably close to what is found from realistic  calculations of cross sections. 

The calculation of the excitation  temperature  as a function of K,, xl, and J is shown  in 
Figure A2. We  now see something  quite different as we  move up  the  rotational  “ladder” - 
for a wide range of conditions T‘,/Tk is essentially independent of J. Note in  particular that  
even for modest values of K between 0.01 and 0.10, the quasi-independence of excitation 
temperature of J starts at quite  modest values of J, between 5 and 10. As an example, CS 
at a kinetic temperature of 23 K corresponds to K1 = 0.1, and we see that  transitions for J 
greater than a few are predicted to have an excitation  temperature of about 10 K for x1 = 
0.1. Taking a collision rate coefficient of 2 x 10-11cm3s-1, we find that  this corresponds to a 
density of 103cm-3. In a basic sense, dipole collisions can  produce  excitation temperatures 
that  are largely independent of J. 

The quasi-thermal behavior with T,, < T k  is emphasized by the form of the  actual collision 
cross sections. This  point is addressed in  Figure A3, which compares the  population 
diagrams  obtained for the  standard  “hard” collisions with those from “dipole” collisions. 
These calculations were carried out including the 2.7 K background radiation field. 
The  abundance of HC3N is sufficiently low that all transitions  are  optically  thin. The 
deexcitation  rates  from Green & Chapman (1978)  allow -10 5 A J  5 0 with significant 
probability, and -20 5 A J  5 0 with non-zero probability. For dipole collisions, we restrict 
the nonzero deexcitation  rates to transitions  with A J  = -1, but multiply  these rates by a 
scaling  factor such that  the deexcitation rate is the  same  as  the  total  deexcitation  rate for 
hard collisions. This factor is found to be approximately 2.4 for initial J greater  than a 
few, and closer to unity for smaller  initial J. We see  for the dipole collisions that  there  is 
significantly lower excitation of the higher-J levels.  For n(H2) = lo3 ~ r n - ~ ,  the  excitation 
temperature is 2.7 K (close to  the background temperature),  compared  to 5 K for the 
hard collisions. For n ( H z )  = 10“ ~ m - ~ ,  the excitation  temperatures  produced by the scaled 
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dipole collisions are  about 3.3 K ,  compared to 8 K for the  hard collisions. For densities in 
excess of lo7 ~ 1 7 2 ~ ~  all  transitions  are  thermalized for scaled dipole collisions. Thus,  the 
collisions which produce  a large change in J result  in values of T,, that  are significantly 
above the background temperature  and  are also  essentially  independent of J .  
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Fig. 1.- Variation of relative  optical depth of rigid rotor  transitions in LTE as  a  function 
of J for different values of the  rotation  constant relative to  the kinetic temperature. 

Fig. 2.- Population  diagrams for HC3N. The HZ density of lo9 ~ 7 7 2 ~ ~  ensures that all 
transitions  are  thermalized, so that LTE applies.  At the kinetic temperature of 22 K, 
a = hBo/kT = 0.01. The curves correspond to different fractional abundances  per  unit 
velocity gradient as indicated by the symbols shown in the lower left. The  maximum  optical 
depth for X = is 377, which occurs for the J = 10 + 9 transition.  The corresponding 
optical  depth of the 1 + 0 transition is 10, and for the 18 + 17 transition is 130. The 
optical  depths scale directly  with  the fractional  abundance. 

Fig. 3.- Optical  depth correction factor as a function of upper level energy for different 
values of the  opacity of the HC3N 1 + 0 transition.  The value of a = hBo/kT is indicated 
in each panel. The circles are for r1,o = 0.001, the squares for rl,o = 0.01, and  the  triangles 
for r1,o = 0.1. The negative of the  natural  logarithm of C, is plotted so that  the resulting 
curves have the  same  orientation as the effect of the finite optical depth on the population 
diagram. 

Fig. 4.- Energy levels  below E l k  = 160K  with I K 15 3 for E-type methanol  with  quantum 
numbers J and K indicated. We show the  radiative  transitions  that involve the  (8,2) level. 
There  are five transitions into this level (indicated by dashed lines); three  with A K  = +I, 
one  with A K  = 0, and one with A K  = -1. There  are  three  transitions out ofthe (8,2) level 
(indicated by dotted lines), one with AK = 0, and two having A K  = + l .  

Fig. 5.- Population  diagrams for E-type methanol based on levels  below E l k  = 160K 
having I K I <  3. We take a velocity gradient  equal to 1 krns-llpc , so that  the  fractional 
abundances  per  unit velocity gradient  indicated  in the lower  left correspond to  the fractional 
abundances of C H 3 0 H .  For the lower C H 3 0 H  fractional  abundances,  there  are  generally 
more  than one  optically thin  transition from a given upper level,  which all appear as a single 
point. As the  fractional  abundance increases, the  transitions  with  larger  optical  depth  fall 
below those extrapolated from optically thin results. For X ( C H 3 O H )  = lo-", there  are 
transitions  with r as low as 0.25, and as large as 30, which produces the  apparent  scatter 
in the  upper level column densities derived without correction for the finite optical  depths. 
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Fig. 6.- Population  diagrams for HC3N levels up  to 70 K above the ground state (including 
J = 0 to J = 18).  The fractional abundance of HC3N per  unit velocity gradient is chosen 
to make all transitions optically thin for all hydrogen densities considered, which vary from 
lo3 ~ r n - ~  to lo8 ~ r n - ~  as indicated by the symbols shown at  lower left of figure. For 
hydrogen densities n(H2) 2 lo7 all transitions  are  thermalized  and  the  population 
diagram curves are  straight lines characteristic of the kinetic temperature of 22 K .  For 
lower densities,  a  variety of effects are seen, including  quasi-thermalization at a temperature 
considerably less than  the kinetic temperature. 

Fig. 7.- Effect of finite  optical depth on subthermally excited HC3N. The curves are for 
different molecular fractional  abundances.  A velocity gradient of 1 krns-llpc  has been used 
to form the  population diagrams. The integrated  intensity is limited by the  optically thick 
LTE curve defined by the  diamond symbols. The maximum values of the  optical  depth for 
collisional excitation  alone  are  in  the region 5 5 J, 5 9, while  for LTE, the  optical  depth 
distribution is much  more widely distributed  and peaks at J,  = 11. 

Fig. 8.- Population  diagrams for optically thin CH30H at hydrogen densities of lo6, 
107.5, and lo9 ~ r n - ~ .  The fractional abundance  per  unit velocity gradient of CH30H is 
10-14(krns-1/pc)-1 and a velocity gradient of 1 krns-llpc has been used to  construct  the 
population  diagrams. For the lowest hydrogen density, the upper levels from different K 
ladders  are  relatively  distinct,  with  the lowest group being the  transitions  in  the K = -3 
ladder,  the next group  the  transitions in the K = +3 ladder,  then  those  in the K = -2 
ladder, while the-highest group includes transitions in the remaining  ladders.  At a density 
of 107.5 ~ r n - ~ ,  only the levels from the K = -3 ladder  are significantly below the LTE curve, 
while for the highest H2 density, all  transitions considered here are essentially thermalized. 

Fig. 9.- Population  diagram  analysis of multi-transition CS data from Snell et al. 1984. 
Data from the (0,O) position in sources S140 and NGC 2024 are  plotted  as  large  triangles 
and filled squares, respectively, while the  results from different H2 densities are  indicated 
by symbols as defined in r.h.  panel. The slope of the population diagram for LTE at 13 K 
is indicated by the heavy curve in lower  1.h. panel. The results of model  calculations at a 
kinetic temperature of 30 K are shown in the 1.h. panel, and for 50 K in the  r.h.  panel. 
We have adopted  a line width of 2 krns-l in accordance  with the observations, and  the CS 
column  density is 1.09 x 1014 c m - 2  for all of the curves. 
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Fig. 10.- Solution of two level system  in which the excitation temperature relative to  the 
kinetic temperature is calculated as a function of the  parameters x = Aul/Cul, the  ratio 
of spontaneous to collisional deexcitation  rates, and K = E,l/kTk, the  ratio of the energy 
difference of the  transition  to  the energy corresponding to  the kinetic temperature.  There is 
no  background radiation considered in this calculation, which also assumes the  transition is 
optically thin. 

Fig. 11.- Excitation  temperature for different transitions of a  linear molecule with collisional 
excitation by dipole collisions ( A J  = 4~1). The parameters x1 and K1 apply  to  the 1 += 
0 transition  and define the ratios of the  spontaneous  to collisional deexcitation rate  and 
the energy of the  transition  to  that of the kinetic temperature, respectively. For significant 
ranges of J as well as of the  parameters defining the conditions in which the molecules are 
found,  the  excitation  temperature is essentially independent of J .  

Fig. 12.- Comparison of population  diagrams for HC3N assuming different excitation 
models. The solid curves  are for “hard” collisions, which  reflect realistic  intermolecular forces 
and which  allow changes in the  rotational  quantum number to  take place with substantial 
probability for A J  up  to 10. The  dotted curves are for dipole collisions, in which A J  = f 
1. The  hard collisions produce significantly greater  excitation of the higher J transitions for 
hydrogen densities 5 lo5 ~ 1 7 3 ~ ~  than do the dipole collisions. The conditions are otherwise 
the  same  as described for Figure 6. 
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